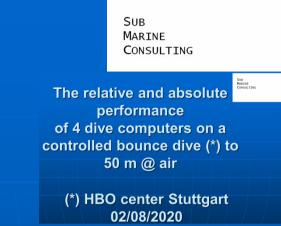
SUB MARINE CONSULTING


The relative and absolute performance of 4 dive computers on a controlled bounce dive (*) to 50 m @ air (*) HBO center Stuttgart 02/08/2020 DOI:

10.13140/RG.2.2.34716.44160

→ Relative Performance: comparison of the TTS / stop times (*) of the 4 computers relative to each other

→ Absolute Performance: comparison of depth readings with HAUX systems and TTS / stop times with well-tried air diving tables

(*) TTS = time-to-surface,i.e.: sum of all stop times + (bottom depth / ascent rate)

SUB MARINE CONSULTING

The relative and absolute performance of 4 dive computers on a controlled bounce dive (*) to 50 m @ air

> (*) HBO center Stuttgart 02/08/2020

Question: do the advertised conservatism settings of the G2 & iX3MDeep match any standard procedures? (say, for eg. with regular **Gradient Factors?)**

Evaluated with: DecoPlanner 3.1.4

🚺 Deco Planner

Deco Planner

Version 3.1.4

SUB MARINE CONSULTING

Question:

do the advertised conservativism settings of the G2 & iX3MDeep match any standard procedures? (say, for eg. with regular Gradient factors?)

DIVE Version 3_07

8

DIVE V 3_07 ist nicht abwaertskompatibel !

DIVE Version 3_07 01/2020 FTN 77 Intel(R) Visual Fortran Intel(R) 64 Compiler Version 17.0.2.187 Build 20170213 copyright: 1991-2020 @ Dipl. Phys. "ALBI" A. Salm, PADI Master Scuba Diver Trainer #33913 SSI Advanced & Technical Extended Range Trimix Instructor #12653 & SubMarineConsulting: www.SMC-de.com Jegliche Haftung, die aus dem Gebrauch oder den Ergebnissen des Programms resultiert, ist hiermit ausgeschlossen ! ! !

older <u>english version</u> there: https://www.divetable.info/DIVE_V3/V3e/index.htm

Standard Air Tables (for comparison with square / box profiles):

SUB MARINE CONSULTING

Question:

do the advertised conservativism settings of the G2 & iX3MDeep match any standard procedures? (say, for eg. with regular Gradient factors?)

→ DCIEM Air Diving Tables;
 Gradient
 Defence and Civil Institute of Environmental Medicine, c.e. 1992
 DCIEM No. 86-R-35, page 1B-16

 \rightarrow Deco 2000; Dr. Max Hahn, c.e. 2000

→ US Navy Diving Manual, Revision 3, 0927-LP-001-9010, 15 February 1993, page 9-60

→ US Navy Diving Manual, Revision 7, 0910-LP-115-1921,
 30 April 2018, page 9-81

→ Dräger Austauchtabelle #210, Dezember 1984, p. 9 (still used as MDv 450/1 in the german navy, p. A 6-7)

The 4 computers:

The 4 computers:

from left to right

→ Scubapro Aladin TEC 2G

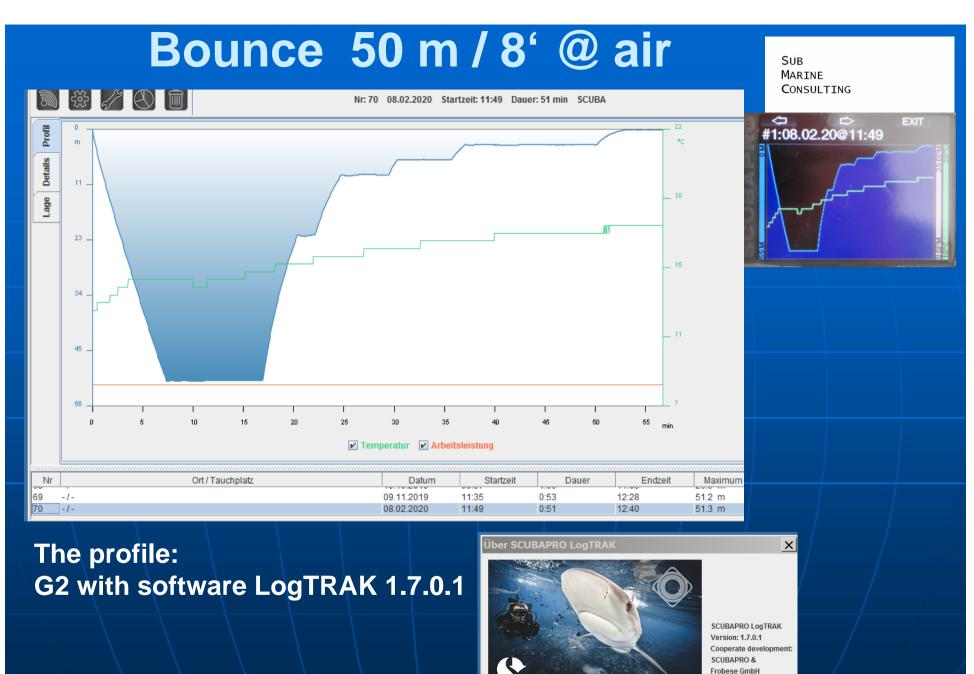
- \rightarrow Software Version: 40 20 72 73 25
- → Setting: MicroBubble Level L0

 \rightarrow Scubapro Galileo G2

- \rightarrow HW: 0.0
- \rightarrow SW: 1.5
- → Setting: MicroBubble Level L1

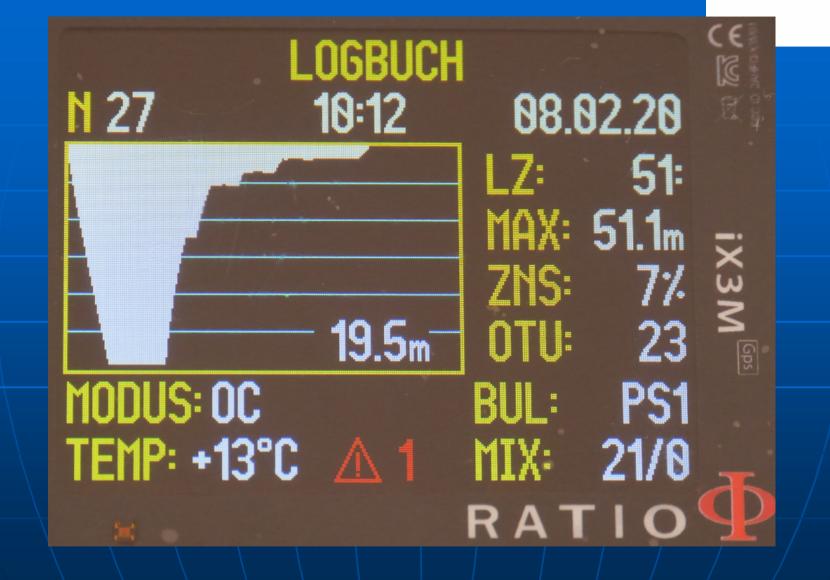
→ Cochran Undersea Technology EMC-20 H
 → Setting: Con = 50 (i.e. maximum conservatism)

→ DiveSystem / RATIO iX3M Deep

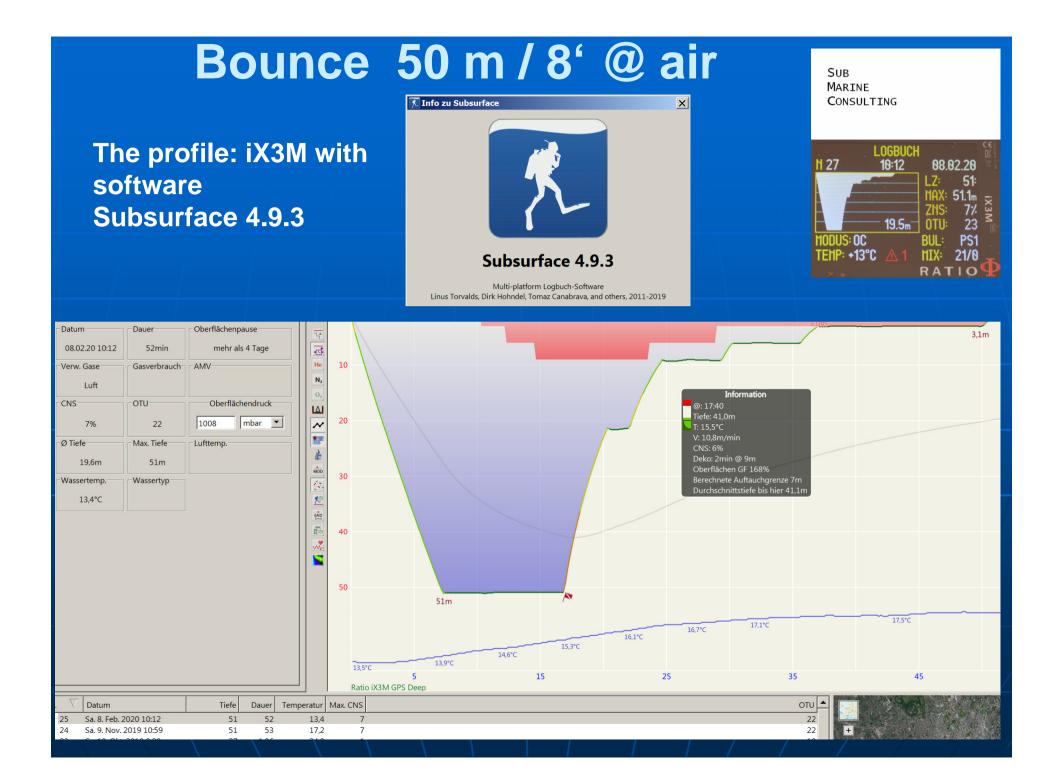

- → Software: 4.0.70 / 014
- \rightarrow Setting: PS = 1 (i.e.: GF Hi = 0.9, GF Lo = 0.9)

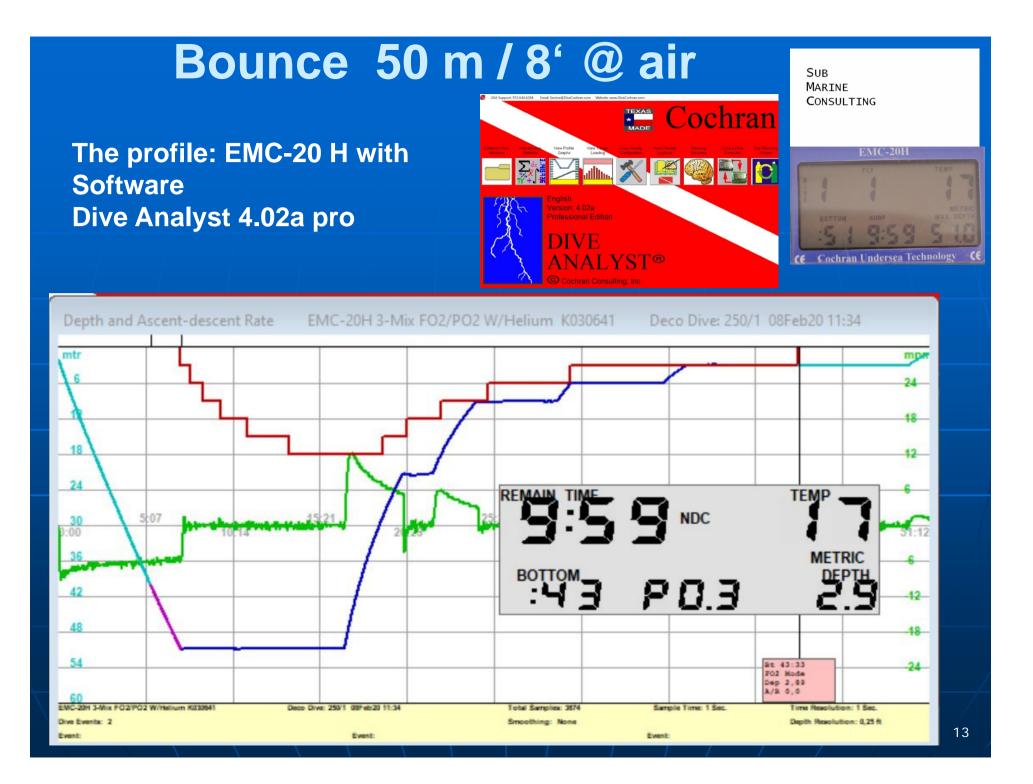
SUB MARINE CONSULTING

The profile: G2 in log book mode



ogTRAK


OK


Galileo 2 ID: 70004107 SW: 1.5

SUB MARINE CONSULTING

The profile: Ratio iX3M in log book mode

The protocol from the deco chamber dive:

SUB MARINE CONSULTING

Meßprotokoll Druckkammerfahrt vom: 08.02.2020

	GFP = ', Tauchzeit: 50 m / 50 min (= ') mit Luft											
Tiefe	e [m] /	Scubapro	DiveSystems	EMC 20 H	Aladin	Benchmark:	Benchmark:					
		Galileo G2	RATIO iX3M	50 % (3)	TEC 2G	DIVE V 3_07	DIVE V 3_07					
Gepr	lante Zeit	V 1.05	Deep		LO	-	_					
[min.	1	L1 (1)	4.0.70/014									
	•]		PS 1 (2)									
TTS=	34'	Tiefe / TTS	Tiefe / TTS	Tiefe /TTS	TTS	TTS GF 100 / 100	TTS GF 90 / 90					
$0 \rightarrow 50$	/ 6'	51,2 / 8'	50,9 / 3' NDL	50,8 / -	51,2 / 3' NDL							
50 /	/ 8'	51,2 / 15'	50,9 / 15'	51,1/11	51,1 / 14'	6 m/2' 3 m/6' TTS = 14	6 m / 3' 3 m / 7' TTS = 17					
50 → 21	1 / 4'	21,7	21,3	<u> </u>	21,5							
21	/ 2'	21,7 / 29'	21,3 / 16'	21,5 / 16'	21,6 / 17'	6 m/2' 3 m/6' TTS = 10	6 m / 3' 3 m / 7' TTS = 13					
21 → 9	/ 3'	9,3	9,2		9,4							
9 /	5'	9,3 / 25'	9,2 / 12'	9,2 / 15'	9,4 / 14'	TTS = 5	TTS = 9					
6 /	5'	6,3 / 23'	6,1 / 8'	6,0 / 11'	6,2/ 11'	TTS = 4	TTS = 8					
2/	151	3,2 / 17'	3,0 / 2'	3,0 / 6'	3,0 / 10'	NDL ab RT 34	NDL ab RT 38					
3 /	15	nach ca. 15':	NDL ab RT 40'	NDL ab RT 44'	NDL ab RT 45'							
		L1 → L0										
Alte DF	Alte DRÄGER Tabelle 51 m / 20': $5/5/15$ (1): MicroBubble Level L1; (2): PS1 \rightarrow GF Hi = 0.90/ GF Lo = 0.90											

NDL = No Decompression Limit

(1): MicroBubble Level L1; (2): PS1 \rightarrow GF Hi = 0.90/ GF Lo = 0.90 (3): maximal conservativism (=50); RT = run time

© albi @ www.SMC-de.com

C:\home\Bilder\Museum\2020\HBO\02\Bounce_50.docx; Stand: 08.02.2020

Bounce 50 m / 8' @ air SUB MARINE CONSULTING Analysis of the deco chamber profile: m Descent Rate= 50 | 6 = 8.33 m | min (*) deco stops @: 9 m / 5 min 6 m / 5 min 3 m / 15 min 11 Ascent Rate = (21 - 9)/3 = 4 m/min 23 deep stop @ 21 m / 2 min Planned TTS : 4 + 2 + 3 + 5 + 5 + 15 $= 34 \min$ 34 Ascent Rate: (50 – 21)/4 = 7.25 m/min 45 bottom phase 8 min (*) "NDL" reached for iXM3M, EMC-20 H, TEC 2G 51,3 m 7:24 10 15 20 25 30 35 40 45 50 55 min worst case scenario: 6 + 8 + 4 + 2 = 20 min bottom time for conservative table planning (box profile) realistic scenario: 6/2 + 8 + 4/2 + 2 = 15 min bottom time for liberal table planning (box profile) 15

Comparison with DP 3 at 50 m:

SUB MARINE CONSULTING

GF 100/100

10		<u> </u>	0	
50	8	21	0	
6	2	21	0	
3	7	- 21	0	

GF	0.9	/ 0.	9	
50	8	21	0	
6	4	21	0	
3	8	- 21	0	
0				

Comparison with DIVE V 3_07 at 50 m:

G	F 100/100					G	F 0.9	/ 0.9		
6m	ko Prognose: Stopp Prognose Deko Stopp Prognose Deko = 14.0	Komp.#: Komp.#:								
			6m Stop	ognose mit p Prognose p Prognose 17.0	Dekozei	t: 3.	0 GF =	0.90	Komp.#:	2

The delta t between DP3, DIVE and the G2 stems from a different ascent rate: DP3 can use only **one** full integer, whereas DIVE and the test profile in the HAUX chamber used 2 ascent rates: 7.25 and 4.0 m/min; G2 uses 6.85 m/min in planning mode.

SUB MARINE CONSULTING

Comparison with DP 3 after deep stop 21 m 2 min:

GF 100/100

	10	1.1				
	50	8	21	0	6	14
	21	4	21	0	17	21
	21	2	21	0	21	20
	6	1	21	0	21	23
	3	8	21	0	23	31
Div	e Time	e: 32	mins		Deco Time: 10	

GF 0.9 / 0.9

	50	8	21	0	6	14
	21	4	21	0	17	21
	21	2	21	0	21	20
l	6	3	21	0	23	25
l	3	10	- 21	0	25	35
	Dive Tir	me: 36	mins		Deco Time	:14

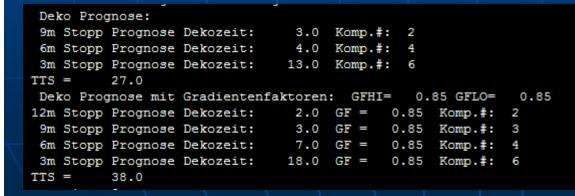
Comparison with DIVE V 3_07 after deep stop at 21 m / 2 min:

GF 1	00/100								GF 0.9	9/0.	9			
6m St	Prognose: opp Prognos opp Prognos 10.0	se Dekoz	2.0	Komp.#:										
					6m St	opp Pro	gnose De	kozeit:	faktoren: 3.0 0 7.0 0	F =	0.90 Ko	mp. #:		
					TTS =	13.							17	

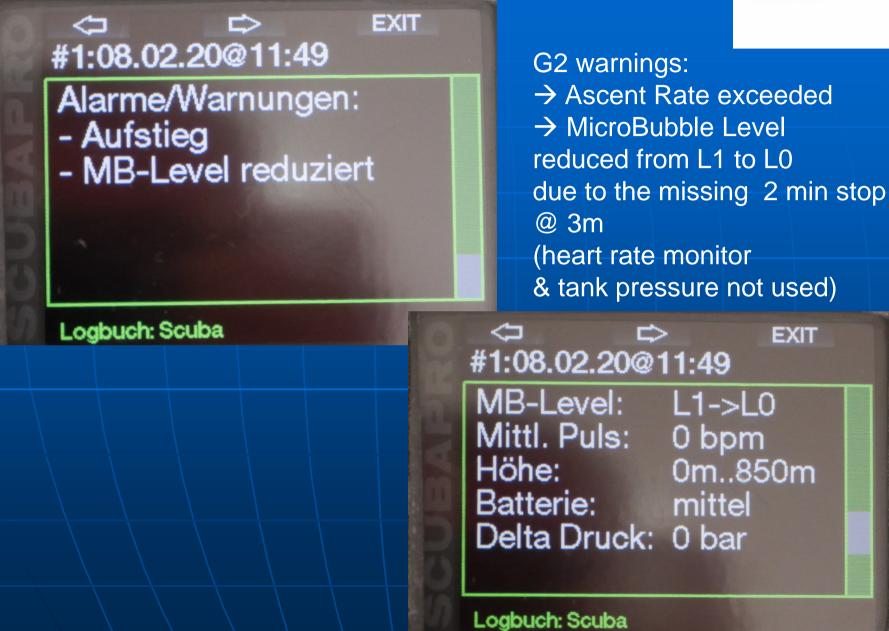
Comparison with other tables / worst case scenario:

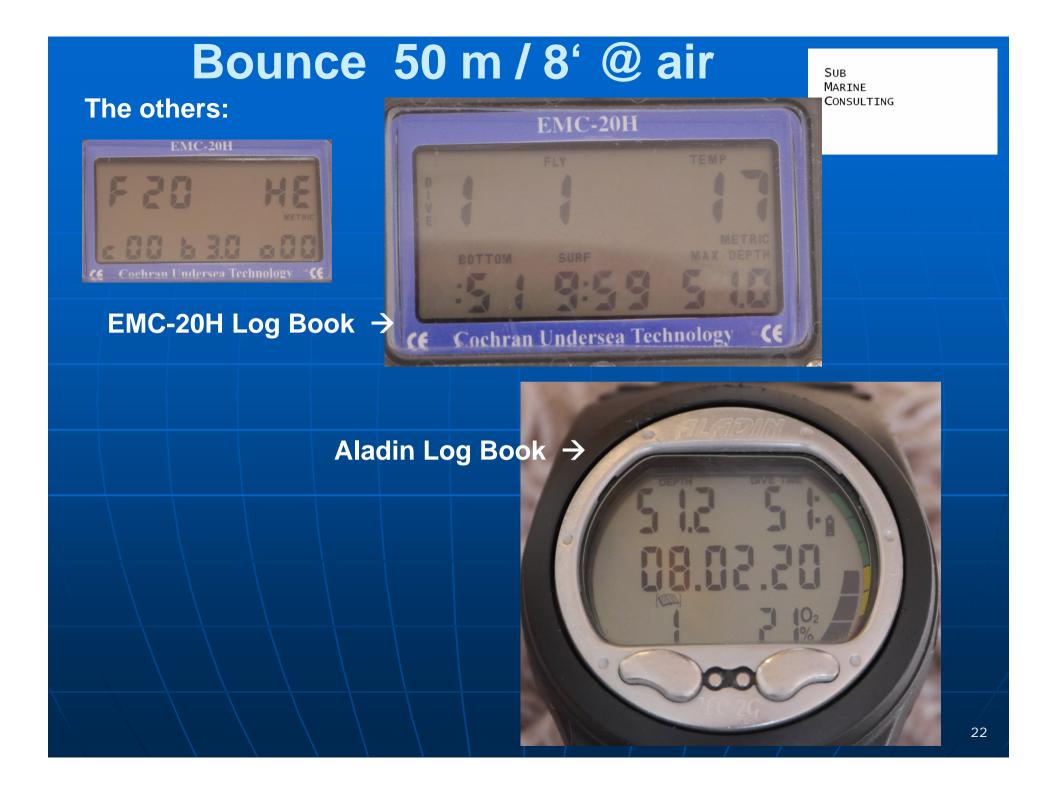
Table Name	Para- meters	Stoptime @ 12 m [min]	Stoptime @ 9 m [min]	Stoptime @ 6 m [min]	Stoptime @ 3 m [min]	TTS [min]
DRÄGER	51 m 20 min	-	5	5	15	30
DCIEM	51 m 20 min	5	5	8	20	43
Deco 2000	51 m 18 min	2	4	7	14	32
USN old	51,8 m 20 min		-	4	15	25
USN new	170 feet 20 min		3	6	24	38
						18

Comparison with other tables / realistic scenario:


Table Name	Para- meters	Stoptime @ 9 m [min]	Stoptime @ 6 m [min]	Stoptime @ 3 m [min]	TTS [min]
DRÄGER	51 m 15 min	-	5	10	20
DCIEM	51 m 15 min	5	7	10	27
Deco 2000	51 m 14 min	3	4	9	21
USN old	51,8 m 15 min	-	2	5	13
USN new	170 feet 15 min	-	3	13	22
					. 19

Comparison realistic scenario:
G2 @ L1 planner fits box profile with:
→ Bühlmann Table correction factor


- \rightarrow GF Hi = GF Lo = 0.85
- \rightarrow and Aladin @ L0; i.e.: GF Hi = GF Lo = 1.0


11.Tauchgangplaner

Synopsis:

SUB MARINE CONSULTING

 \rightarrow The errors in the depth-reading range from ca. 2.5 to 6 % which is regularly more than the specifications from the dive computers handbooks.

→ The EMC-20 H (with Con = 50) matches, just by accident, the Aladin TEC / L0, which is funny, since neither the intended user-groups (pro vs. rec) nor the used deco models (modified USN with 20 compartment vs. modified Bühlmann ZH-L with 8 compartments) match.

→ Aladin TEC / L0 matches pretty much the benchmarks with the claimed Gradient Factors = 1.0, i.e.: 100 % ZH-L ,,x"C with Bühlmann Table correction factor.

 \rightarrow The Ratio iX3M with PS =1 matches pretty much a standard conservatism with the claimed Gradient Factors of 0.9 for a ZH-L16 C

→ The G2 with L1 matches pretty much with a standard GF for ZH-L 16C of GF Hi = 0.85 & GF Lo = 0.85, but only in the "Dive Planner" mode for a square / box-profile.

Synopsis, G2 continued: 50 m / 8' @ air

SUB MARINE CONSULTING

→ During diving it doesn't match at all: there is an added conservatism through a hidden / unpublished parameter / procedure, which presents itself to the diver during ascent as an unsymmetrical de-saturation, i.e. prolonged stop times.

This may not stem from the heart rate nor the air consumption or temperature adaptions in the modified ZH-L implementation, since these features have not been used during the test dive. But the de-sat times during surface interval match again then with other computers:

This asymmetry in de-saturation reveals itself only if MB Level > 0, i.e.: L1 or higher. With <u>L0 this asymmetry is not seen</u> (page 4): <u>https://www.divetable.info/skripte/HBO_Stgt_250519.pdf</u>